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Abstract. We study the problem of a magnetic polaron in an one-dimensional antiferromagnetic semi-
conductor (ferron). We obtain an analytical solution for the distortion produced in the antiferromagnetic
structure due to the presence of a charge carrier bound to an impurity. The region in which the charge
carrier is trapped is of the order of the lattice constant (small ferron) but the distortion of the magnetic
structure extends over a much larger distance. It is shown that the presence of this distortion makes the
ferron more stable, and introduces a new length scale in the problem.

PACS. 75.10.Pq Spin chain models – 75.50.Pp Magnetic semiconductors – 75.30.Hx Magnetic impurity

1 Introduction

Quite a while ago Nagaev [1] has shown that the minimal
energy for a charge carrier moving in an antiferromag-
netic background is obtained when the electron modifies
the magnetic background and is self-trapped in a region
with canted antiferromagnetic or ferromagnetic order. The
term ferron (a magnetic polaron in an antiferromagnetic
background) was coined there to name this new quasi-
particle. Depending on the radius of the self trapping re-
gion, it is possible to differentiate between small ferron,
localized in a region of the order of the lattice constant,
and large ferron localized at larger scales. Small bound fer-
rons are expected to be typical of the low doping region
of the phase diagram of manganites, when the material is
antiferromagnetic and insulating. Reviews can be found
in references [2–4]. Treatment of magnetic polarons in
Hubbard and t−J models can be found in references [5,6],
respectively.

There are also experimental data that confirm the ex-
istence of bound ferrons in antiferromagnetic semiconduc-
tors such as underdoped manganites. A review of them can
be found in references [7,8]. In reference [9], a liquid-like
spatial distribution of magnetic droplets in La1−xCaxMn3

with x = 0.05, 0.08 is reported. Ferromagnetic rich-hole
droplets with a diameter of 4−5 lattice units isotropically
distributed with a mean distance of 9 lattice units among
them are observed in an antiferromagnetic poor-hole back-
ground. Also it is reported that these magnetic droplets
are coupled together through the antiferromagnetic back-
ground. In reference [10], a 55Mn NMR study on the same
compound within the doping range x < 0.23, confirms the
electronic phase separation and report the existence of
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thin boundaries between antiferromagnetic and ferromag-
netic domains. These magnetic droplets contain a number
of conduction electrons larger than one (about 30), but
this is not essential in describing the spin distortion that
they create in the antiferromagnetic background.

Almost in all the calculations of the ferrons it was as-
sumed that the region of the distortion of the magnetic
structure coincides with the range of localization of the
electron. Often these regions were simply taken as spheres
of radius R, to be determined self-consistently. However,
as first pointed out by De Gennes [11], the distortion of
the magnetic order around a magnetic defect (i.e. ferron)
may decay slowly with distance. In this paper we study
what would be the “back effect” of this slowly decaying
magnetic distortion on the conditions of the electron local-
ization and on the properties of the resulting self-trapped
state. First numerical calculations addressing this prob-
lem have been carried out recently by Nagaev [12]. In this
paper the magnetic anisotropy, always present in real ma-
terials, was neglected, and he did not manage to obtain
the results in a closed form and did not get proper esti-
mates for the radius and the energy of the ferron taking
this effect into account.

In this article, we obtain the analytical solution for
the distortion created by a localized conduction electron
trapped in a region of the order of the lattice constant
in an one-dimensional antiferromagnetic semiconductor.
The main virtue of our calculation is than reveals the ex-
istence of a region surrounding the trapping region which
acts as an antiferromagnetic domain wall, as it was antici-
pated in reference [12]. We calculated the properties of the
ferron in this situation and show that the account of an
extended magnetic distortion around it actually leads to
an increase of the ferron stability and its binding energy.
Our result could offer a key to understand the features of
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the phase diagram of antiferromagnetic semiconductors,
such as manganites at the small doping range x < 0.1.

2 Results

To study the problem of the magnetic polaron formation,
we start from the Hamiltonian proposed by Nagaev [12].
We analyze the one-dimensional case because it can be
treated analytically and its solution provides a full phys-
ical insight into the problem. Estimates to the three-
dimensional case are given below. We consider an one-
dimensional chain of magnetic ions along the y-axis,
described by the double exchange (or Vonsovsky s-d)
model. An uniaxial magnetic anisotropy term is added
with x being the easy axis. The magnetic structure of the
magnetic ions without the conduction electron is repre-
sented by two sub-lattices with the spin up along the easy
axis (that means Sx = S) for ions at even sites (g = 2n),
and spin down (that means Sx = −S) for ions at odd
sites (g = 2n + 1). All distances are measured in terms
of the lattice constant. A non-magnetic donor impurity
is added to the chain at the point y = −1/2. Its con-
duction electron is bound to it and it can jump between
their two magnetic neighbors (bound ferron). This dis-
turbs the pure antiferromagnetic order along the chain,
even though the conduction electron is trapped only on
these two magnetic ions. The Hamiltonian of the system
can be represented by:

Hsd = −t
(
a+
−1,σa0,σ + a+

0,σa−1,σ

)
− A

∑
g=−1,0

(sSg)σ,σ′ a+
g,σag,σ′

− I
∑

g

SgSg+1 − K ′ ∑
g

(
Sx

g

)2 (1)

where a+
g,σ, ag,σ are the conduction electron operator cor-

responding to the site g and spin projection σ, s the con-
duction electron spin operator, Sg is the spin operator of
the magnetic ion at site g (d-spins). The d-d exchange
integral I is assumed negative in order to get the antifer-
romagnetic ordering. The anisotropy constant K ′ is con-
sidered positive.

Hamiltonian (1) reflects the fact that the conduction
electron is restricted to move only over the site g = −1, 0.
This correspond to take the Coulomb attraction between
conduction electron and the impurity as a deep rectan-
gular well of a size of two lattice constants. This approx-
imation is valid when the Coulomb attraction between
conduction electron and impurity is of the order of the
largest parameter in the Hamiltonian (1). This situation
is typical of charged impurities in magnetic semiconduc-
tors. The energy of Coulomb interaction between the con-
duction electron and the impurity is an additive constant
which does not depend on the d-spin configuration and,
for this reason, omitted in the calculation.

Depending on the relative value of the parameters
W = 2zt and AS, z being the number of first neighbors
and S the magnitude of the d-spin, we have two different

situations. In the case W � AS, we talk about a wide-
band semiconductor. In the case W � AS, we talk about
a double exchange semiconductor.

Our goal is to obtain an expression for the magnetic en-
ergy of the system of d-spins, both in the case of wide-band
and double exchange semiconductors. As S ≥ 2 for the
compounds of interest (typically, manganites), the d-spins
are considered classically. Their orientations are described
in a coordinate system centered in the position of each
magnetic ion. As it was stated above, it is assumed that
the conduction electron is in the lowest bound state in
the space spanned by the operators of the sites g = −1, 0.
Also we assume that the magnetic moment of the ferron is
directed along z-axis, that is, the conduction electron spin
acts as an effective magnetic field along the z-axis for the
d-spin system. In this case, the following symmetries hold
for the d-spin system: Sy

g = 0, and Sz
g = Sz

−(g+1). Then
Sg = S ((−1)g sin θg, 0, cos θg). It is important to notice
that here, although the d-spin lies in the z − x plane, the
angle θ is not the polar angle, but the spherical coordinate.

To obtain the magnetic energy of the d-spin system
the electronic part of the Hamiltonian (1) must be aver-
aged out. To do this, we assume that the electronic wave
function is the ground state wave function for the domi-
nant term in the electronic Hamiltonian, i.e. the hopping
term in the wide-band case, and the s-d exchange term in
the double exchange case. The other term is treated as a
perturbation [17]. In the case of wide-band semiconduc-
tor, the hopping term is diagonalised and its ground state
is |Φ〉 = 1√

2

(
a+
−1,1/2 + a+

0,1/2

)
|0〉. In the case of double

exchange semiconductor, the ground state is the same but
the operators a+

g,1/2 being the operators with the spin pro-
jection along the direction of the vector Sg, instead of the
laboratory z-axis. We treat the case of a wide-band semi-
conductor first. Then the magnetic energy of the d-spin
system is:

E = J
∑

g

cos (θg + θg+1)

− L[cos θ−1 + cos θ0] − K
∑

g

sin2 θg − t (2)

where: J = −IS2, L = AS/4, and K = K ′S2.
Minimizing the equation (2) with respect to the an-

gles θg, a set of non-linear equations is obtained:

J sin (θg + θg+1) + J sin (θg−1 + θg)
− L sin θg[δg,−1 + δg,0] + K sin (2θg) = 0. (3)

There is a boundary condition θg→±∞ = π/2 if the
chain is long enough, that means if KN � L, with N
being the number of magnetic ions of the chain. Further,
the above symmetry conditions imply that only the sites
with g ≥ 0 must be considered.

For the double exchange case, the same set of equations
is obtained but the term in L in equation (2) must be
changed by the standard effective hopping of the double
exchange model, −t cos

(
θ−1+θ0

2

)
[18], and the constant
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term −t must be changed by −2L. Using the symmetry
condition θ−1 = θ0, this is equivalent to change L by t/2
in equation (3). Therefore both cases can be treated on
the same footing.

Following the paper by Néel [13], we look for a differ-
ential equation for the d-spin distortion. If we were dealing
with a ferromagnetic d-d exchange, the set of equations (3)
would describe a domain wall. To obtain a differential
equation for our problem an additional step is needed.
Instead of working with the angles θg, we perform a ro-
tation of an angle π around each y-axis if the site is an
odd site, and no rotation if the site is an even site. This
corresponds to make the following changes in the angles:
θ2n → θ2n, θ2n+1 → π − θ2n+1. We assume that the
length of variation of the angle θ is larger than the lat-
tice constant. We treat θ as a continuous function over
the y-axis and perform a power expansion in the lattice
constant. Then a differential equation is obtained. Taking
into account the above symmetries, we have to solve only
for the positive semi-axis. Further, we divide the problem
in two parts. For y > 0, we have:

J
d2θ

dy2
+ K sin 2θ = 0. (4)

For y = 0 and using again the symmetries, we obtain:

J
dθ

dy

∣∣∣∣
y=0

+ (J + K) sin 2θ0 − L sin θ0 = 0 (5)

where θ0 = θ (y = 0). This is the sine-Gordon equation
with a boundary condition at the origin. The simple
coupling between d-spin system and conduction electron,
with a linear term in L in equation (5), can be traced
back to the simplified choice of the wave function of the
conduction electron. For a more realistic wave function
(that means a more realistic Coulomb attraction between
conduction electron and impurity), a more complicated
coupling would be obtained. The linear coupling appears
because the localization region in which the conduction
electron moves has an homogeneous canting order. This
is the only possible ordering in the region of two lattice
sites. In a more general situation the different backgrounds
contribute to the coupling between both subsystems. How-
ever, when W, AS � J , as in real materials, the contribu-
tion mainly comes from these canted ferromagnetic back-
grounds and therefore our approximation is justified.

We solve equation (4) with the boundary condition
that θy→+∞ → π/2. Multiplying by 2 dθ

dy and integrating
once, we obtain:

J

(
dθ

dy

)2

− K cos 2θ = C (6)

where C is the integration constant. Following refer-
ence [14], we made:

C = J

(
dθ

dy

)2
∣∣∣∣∣
y=0

− K cos 2θ0

=
1
J

[L sin θ0 − (J + K) sin 2θ0]
2 − K cos 2θ0. (7)
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Fig. 1. Magnetization along z-axis, Sz
g , (in units of S) with

L = 3 and anisotropy K = 2.5 × 10−2 (both in J units). Only
one half, g ≥ 0, of the chain is shown. To minimize d-d exchange
energy neighbouring spin are nearly antiparallel, Sz

g = −Sz
g+1.

Despite of this two different conditions are satisfied: at the
center of the chain g = 0, |Sz

g | ≈ 1, but at the end of the chain,
Sz

g ≈ 0. This structure gives a full energy gain in L with a
small lost in exchange and anisotropy energies.

The last step is to take into account equation (5). Now we
made the following change:

sin θ =
f (y) − 1
f (y) + 1

. (8)

The differential equation (6) is cast into the form:

1
(f + 1)2

[
1
f

(
df

dy

)2

+
2K

J
(f − 1)2

]
=

[
L

J

f0 − 1
f0 + 1

−4
J + K

J

f0 − 1
(f0 + 1)2

√
f0

]2

+
2K

J

(
f0 − 1
f0 + 1

)2

(9)

where we define f0 = f (y = 0). The solution of equa-
tion (9) is:

f (y) = exp (a + by) (10)

with a, b being two real constants to be determined. Note
that a, b > 0 guarantees that the angle θ lies in the range
(0, π/2) for y belonging to the domain [0, +∞). Also note
that at the infinite θ goes to π/2, as required. The differ-
ential equation is identically satisfied if:

b2 =
8K

J
(11)

and: √
8K

J

√
f0

f0 − 1
=

L

J
− 4

J + K

J

√
f0

f0 + 1
(12)

which is numerically solved to obtain f0, or alternatively a.
In reference [14], the solution of the equation (4) with the
boundary condition (5) is treated in detail.

In Figure 1 we plot the magnetization along the z-axis,
Sz

g , for the values of L = 3, K = 2.5 × 10−2 (both
in J units). This is obtained by inverting the above
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Table 1. Ground state energies (in J units), canting angle in
the core, θ0, and total magnetization along z-axis (in S units),
Mz, for a 1D magnetic polaron with, and without compensat-
ing region, using L = 3, K = 2.5 × 10−2 (both in J units).

Ground state
θ0 Mz

energy

With comp. reg. −3.60101 0.22011 1.00019S
Without comp. reg. −2.68811 0.63688 1.60791S

changes to the original angles. Note that only one half of
the chain is shown. It can be seen how while neighboring
d-spins are almost antiparallel to minimize d-d exchange
energy, that is Sz

g ≈ −Sz
g+1, the magnetic moment of each

sublattice rotates to satisfy two different conditions: at
the center of the chain, g = 0, d-spins are along z-axis
and |Sz

g | ≈ 1, and at the end of the chain d-spin are along
x-axis and Sz

g ≈ 0.
We calculate the total magnetization that appears in

the d-spins system along the z-axis. The result is shown in
Table 1. As can be seen, the existence of the magnetic dis-
tortion outside the localization region of the charge carrier
leads to a partial compensation in the total magnetization.

With the analytical solution one can easily calculate
the radius of the magnetic distortion. As can be seen from
the solution, equations (8, 9), the radius is not properly
defined, because the distortion created by the conduc-
tion electron in the magnetic system of d-spins reaches
the complete chain. We choose to define the radius as
the distance at which the straight line with slope equal
to dθ

dy |y=0 and passing throughout the origin at θ0, reaches
the value π/2. This underestimates the radius, but has the
obvious advantage that in this way, the radius depends
only on the value of the constant a, or alternatively on
the angle θ0:

R =
(π

2
− θ0

)√
J

2K
sec θ0. (13)

Also note that the value of θ0 ≈ 0 and therefore R ≈
π
√

J/8K. We obtain R = 6.18981 (in lattice constant
units) for K = 2.5 × 10−2 (in J units).

With the analytical solution it is also easy to calcu-
late the energy of the ferron. The equation for the en-
ergy, equation (2), contains also the energy for the system
of d-spins even in the case with no conduction electron
present. This energy has a value of E0 = −(J + K)N . We
define the energy of the magnetic polaron as E − E0. As
the transformation that we perform to obtain the differen-
tial equation (6) is a canonical transformation, we can use
it again to calculate the energy. Taking this into account
we transform the equation (2) and make again a power
expansion in the lattice constant:

E = Ecore − 2
∫ N

2

0

dy

{
J

[
1 − 1

2

(
dθ

dy

)2
]

+ K sin2 θ

}

(14)
where Ecore = J (1 + cos 2θ0)−2L cosθ0−t [19]. Therefore
the polaron energy is:

Epol = E − E0 = Ecore +
√

8JK (1 − sin θ0) (15)

as expected from the result for the ferromagnetic domain
wall. Also note again that the value of θ0 is small and
therefore Epol ≈ −2 (L − J) − t +

√
8JK, not only in the

case of wide-band, but also in the case of double exchange
semiconductor.

The motivation for the energy calculation is to demon-
strate that the ground state energy of a bound fer-
ron with a magnetization compensating region is much
lower than the ground state energy of a bound ferron
without such a long-range distortion. In Table 1, we
present the result for the ground state energy of the
magnetic polaron calculated from the equation (15). We
also show for comparison the result in the case with-
out compensating region. This latter was calculated solv-
ing the set of equations (3) numerically, and imposing
θ1 = π/2. As expected the energy coming from equa-
tion (15) is lower, meaning that a true bound ferron is
much more stable than bound ferrons considered previ-
ously in the literature, as it was once again anticipated
by Nagaev in [12].

As can be seen from the equation (15), the main part of
the energy of the magnetic polaron is concentrated in the
core, that means at the sites g = −1, 0, where the charge
carrier is trapped. The energy in the compensating region,
that means outside the sites g = −1, 0, is very small and
positive. This seem to be in contradiction with the previ-
ous discussion, in which the presence of a compensating
region was presented as energetically favored. The physi-
cal explanation of this behavior is the following. The main
energy scale in the problem that is coupled to the magnetic
ordering is L, the s-d interaction, in a wide-band semicon-
ductor. It tends to put the d-spins in the core as parallel to
the z-axis as possible. But the d-spins in the core are con-
nected to the rest of the chain through the d-d exchange
term. The role of the compensating region is to isolate
the d-spins in the core from the rest of the chain. This
allows the d-spins in the core to be parallel to the z-axis
with a high gain in s-d exchange energy (Ecore is high and
negative) and a little loss due to the perturbation of the
antiferromagnetic ordering on the remaining part of the
chain (the energy of the compensating region is positive
but small). To better explain this point, we also show in
Table 1, the canting angle of the d-spins of the core, θ0, for
a bound ferron with compensation region, and for a bound
ferron without compensating region. As can be seen, the
presence of the magnetization compensation region with
the structure described above strongly reduces the value
of canting angle. It is important to note that the existence
of extended spin distortions does not rest on the presence
in the model of the anisotropy term. A similar solution can
be found by taking the limit K = 0 in equations (4, 5),
but the radius of the distorted spin region goes to infin-
ity. Also, because of the rotational invariance of the model
with K = 0, the ferron energy is independent of the rela-
tive orientation of the magnetic moment of ferron to the
long-range magnetic ordering of the sample. The presence
of the anisotropy term breaks this degeneracy and makes
the radius of the distorted spin region take a physical
finite value.
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Apart for the solution treated here, there is another
possible solution for the d-spin structure [16]. This sec-
ond solution is characterized by the absence of extended
spin distortions. It corresponds to rotate by an angle π
around y-axis the d-spins of one half, say the negative
one, g < 0, of the chain. This makes that the magne-
tization in the trapping region will be directed along x-
axis, instead of z-axis. Mathematically, it corresponds to
choose a different symmetry condition for the d-spin sys-
tem, namely Sy

g = 0, and Sx
g = Sx

−(g+1). This solution
saves more anisotropy energy and allows for a lower cant-
ing angle in the core, being at first instance the ground
state in the range of parameters chosen here. However, as
the Heisenberg model has to be solved over a compact-
ified ring, that is, the d-spin at g −→ +∞ is linked to
the d-spin at g −→ −∞, one has to add an extra en-
ergy 2J to the polaron energy, equation (14). Therefore
as J � K the ground state always corresponds to the
solution treated here. In 2D (3D), this cost in energy is
at least 8J (24J) if one assumes localization regions of
the conduction electron of 4 (8) sites. This correspond to
the situation in which one creates the ferron simply by
rotating the d-spins of one half of the sites in the localiza-
tion region by π. If one tries to move this abrupt barrier
to the infinity the cost in energy goes to infinity because
the boundary in 2D (3D) has dimension 1 (2), not being
simply a point. The only possibility to avoid this large en-
ergy lost would be to place a second ferron near the first
one, to compensate the rotation by π in part of the chain.
While this is easy in 1D, it is not possible in 2D, 3D for a
general ferron distribution, causing the frustration of the
antiferromagnetic ordering, and a lost in energy of the or-
der of J . This second kind of solutions also implies the
breakdown of the long-range antiferromagnetic order at
very low densities of ferrons, which is not observed in real
compounds [15]. Note also that with the solution we fo-
cus on in the manuscript, the energy lost is of the order
of

√
JK, and the long-range antiferromagnetic survives up

to densities of the order of
√

K/J . Therefore, the solution
treated in this article seems the relevant one to the physics
of real compounds.

The three-dimensional case cannot be solved analyti-
cally. We only give a simple estimate for the radius of the
distortion for an antiferromagnetic coupling. We use the
three-dimensional analogue of the Hamiltonian (1).
The case K ′ = 0 is treated in reference [11]. To introduce
the anisotropy we use a simple variational method. We as-
sume that the distortion angle is given by the spherically-
symmetrical asymptotic solution of De Gennes, θ (r) ∼
1/r2 for r < R, and that there is no distortion for r > R.
The optimal value of R is obtained by minimization.
For R large, we obtain R ∼ (J/K)

1
6 . This provides an

order of magnitude for the radius of the distortion. With
this estimate for the radius of the distortion is now clear
that, in real three-dimensional materials and over exper-
imental doping ranges, the (one-electron) ferrons treated
here must overlap, forming magnetic droplets with a num-
ber of conduction electrons larger than one, as reported
in the experiment. Therefore it is expected that the main

conclusions of this article hold for the three-dimensional
case and for real materials, although to discuss the for-
mation of these magnetic droplets would be necessary to
include in our model the repulsive Coulomb interaction
between conduction electrons.

To summarize, we have found the detailed structure
of the one-dimensional d-spin system in the region sur-
rounding of a bound ferron, completing the previous re-
sults of [1,11,12]. The main result is the appearance of
a new length scale, namely the extent of the magnetic
distortion created by the charge carrier. The existence of
this distortion makes the ferron more stable. This may de-
termine, together with the Coulomb interaction, the spa-
tial distribution of magnetic droplets and their coupling
in antiferromagnetic semiconductors, such as underdoped
manganites. Also it could be related to the onset of the
electronic phase separation at the very low doping range
observed in these compounds.
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proposing this problem and his encouragement and help dur-
ing its realization. We also acknowledge to E. Dagotto, A.O.
Sboychakov, A.L. Rakhmanov, K.I. Kugel, A.V. Klaptsov, I.V.
Brodsky and M.Yu. Kagan for useful discussions.
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